

Physics Standard level Paper 1B

29	Α	pril	20	25

Zone A afternoon | Zone B afternoon | Zone C afternoon

Candidate session number								

1 hour 30 minutes [Paper 1A and Paper 1B]

Instructions to candidates

- · Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- · Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- A clean copy of the **physics data booklet** is required for this paper.
- The maximum mark for paper 1B is [20 marks].
- The maximum mark for paper 1A and paper 1B is [45 marks].

2225-6717

Answer all questions. Answers must be written within the answer boxes provided.

1. A student determines the resistivity ρ of a metal that is in the form of a cylindrical wire. The student makes the following measurements:

Length L of the wire = (462 ± 2) mm

Readings for the diameter *d* of the wire:

Reading	1	2	3	4	5	6
d / mm	0.18	0.20	0.21	0.22	0.26	0.18

Resistance R of the wire = $(13.7 \pm 1.5 \%)\Omega$

(a)	Outl	ine why the measurements of d were made at different places along the wire.	[1]
(b)	Sug	gest suitable instruments for the measurement of	
	(i)	L	[1]
	(ii)	d	[1]
		• • • • • • • • • • • • • • • • • • • •	

(This question continues on the following page)

(Question	1	continued)	
-----------	---	------------	--

 (c)	(i)	Show that the mean diameter of the wire is about 0.2 mm.	[2]

		•••••••••••••••••••••••••••••••••••••••	
	(ii)	Calculate the fractional uncertainty in the mean diameter of the wire.	[2]

	(iii)	Calculate the fractional uncertainty in the length of the wire.	[1]
(d)		resistivity of the wire is given by $\rho = \frac{RA}{L}$ where A is the cross-sectional area of vire. Calculate the value of ρ and its absolute uncertainty. State your answers to an	
		opriate number of significant figures.	[3]
		• • • • • • • • • • • • • • • • • • • •	

2. The equation $PV = Nk_BT$ describes the behaviour of an ideal gas.

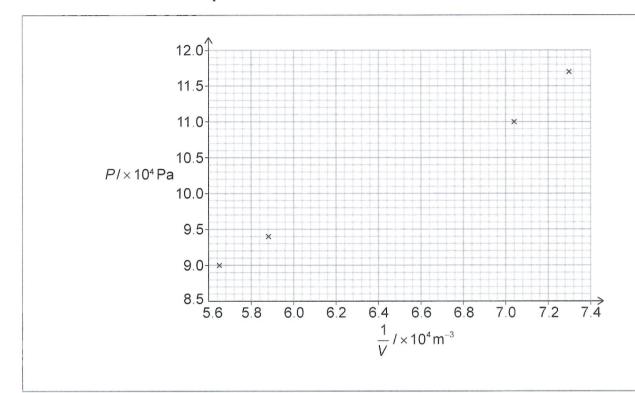
A student tests a fixed mass of gas to confirm that, for a constant temperature,

$$PV = K$$

where K is a constant.

The student does this by making measurements of P and V.

Five sets of data for this experiment are shown in the table. Four processed values of $\frac{1}{V}$ are also shown.


P / kPa	V / 10 ⁻⁵ m ³	$\frac{1}{V}$ / 10 ⁴ m ⁻³
117	1.37	7.30
110	1.42	7.04
103	1.54	
94	1.70	5.88
90	1.77	5.65

(This question continues on the following page)

(Question 2 continued)

The variation of P with $\frac{1}{V}$ is shown for four data points.

(a) (i) Plot the missing data point on the graph.

[1]

(ii) Draw the best-fit line on the graph.

[1]

(iii) Explain how the student can use the graph to decide whether the data support the relationship PV = K.

P.	$\overline{}$	7
	3	1
- 1	v	1

(This question continues on page 7)

(Question 2 continued)

(b)	(i)	Determine K.	[2]
		,,	
	(ii)	State an appropriate SI unit for <i>K</i> .	[1]
(c)	The	laboratory is at a constant temperature of 291 K.	
	Dete	ermine the number of molecules in the fixed mass of gas.	[1]

